Přejít k hlavnímu obsahu

Přihlášení pro studenty

Přihlášení pro zaměstnance

Publikace detail

Lifetime Adaptation in Genetic Programming for the Symbolic Regression
Rok: 2019
Druh publikace: článek ve sborníku
Název zdroje: Computational statistics and mathematical modeling methods in intelligent systems : proceedings of 3rd computational methods in systems and software 2019, Vol. 2
Název nakladatele: Springer Nature Switzerland AG
Místo vydání: Cham
Strana od-do: 339-346
Tituly:
Jazyk Název Abstrakt Klíčová slova
cze Adaptace v genetickém programování a symbolické regresi Tento článek se zaměřuje na použití hybridního genetického programování pro symbolickou regresi Hybridní verze symbolické regrese používá genetické programování pro hledání struktury matematického modelu a lokální učení pro ladění parametrů modelu. Lokálního učení může urychlit evoluci, ale nevýhodou jsou dodatečné výpočetní náklady. Článek porovnává Lamarckův a Baldwinův přístup k evoluci a jejich vliv na umělou evoluci při hledání matematického modelu popisujícího zadané datové body. Baldwinův efekt; genetické programování; hybridní evoluční metody; Lamarckismus; lokální učení; symbolická regrese
eng Lifetime Adaptation in Genetic Programming for the Symbolic Regression This paper focuses on the use of hybrid genetic programming for the supervised machine learning method called symbolic regression. While the basic version of GP symbolic regression optimizes both the model structure and its parameters, the hybrid version can use genetic programming to find the model structure. Consequently, local learning is used to tune model parameters. Such tuning of parameters represents the lifetime adaptation of individuals. Choice of local learning method can accelerate the evolution, but it also has its disadvantages in the form of additional costs. Strong local learning can inhibit the evolutionary search for the optimal genotype due to the hiding effect, in which the fitness of the individual only slightly depends on his inherited genes. This paper aims to compare the Lamarckian and Baldwinian approaches to the lifetime adaptation of individuals and their influence on the rate of evolution in the search for function, which fits the given input-output data. Baldwin effect; Genetic programming; Hybrid evolutionary methods; Lamarckian evolution; Local learning; Symbolic regression