Přejít k hlavnímu obsahu

Přihlášení pro studenty

Přihlášení pro zaměstnance

Publikace detail

Intelligent preloading of websites resources based on clustering web user sessions
Autoři: Čegan Lukáš
Rok: 2015
Druh publikace: článek ve sborníku
Název zdroje: 2015 International Conference on IT Convergence and Security, ICITCS 2015
Název nakladatele: IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání: New York
Strana od-do: 1-4
Tituly:
Jazyk Název Abstrakt Klíčová slova
cze Inteligentní předběžné načítání zdrojů webové stránky založené na shlukování relací webových uživatelů This paper presents a new approach to accelerate website loading. Today's web users are impatient and therefore it is necessary to render each web page as soon as possible. However, the ever increasing average size of web pages and insufficient transmission speed of some networks do not reach the desired rendering time. In this work we proposed a solution for intelligent preloading of website resources based on a combination of the Markov model, a utility function, and a data mining technique which is based on clustering of users. Clustering is performed according to the behavior patterns of each user. webová stránka; předběžné načítání zdrojů; benchmark; výkonnost webové stránky; shlukování; relace uživatele
eng Intelligent preloading of websites resources based on clustering web user sessions This paper presents a new approach to accelerate website loading. Today's web users are impatient and therefore it is necessary to render each web page as soon as possible. However, the ever increasing average size of web pages and insufficient transmission speed of some networks do not reach the desired rendering time. In this work we proposed a solution for intelligent preloading of website resources based on a combination of the Markov model, a utility function, and a data mining technique which is based on clustering of users. Clustering is performed according to the behavior patterns of each user. website; preloading resources; benchmark; web performance; clustering; user session