Přejít k hlavnímu obsahu

Přihlášení pro studenty

Přihlášení pro zaměstnance

Publikace detail

Factorization of processes parametric spectra on the base of multiplicative linear prediction polymodels
Autoři: Kudriavtseva Nataliia
Rok: 2014
Druh publikace: článek ve sborníku
Název zdroje: 2014 24th International Conference Radioelektronika
Název nakladatele: IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání: New York
Strana od-do: pp.1,4
Tituly:
Jazyk Název Abstrakt Klíčová slova
cze Faktorizace zpracování parametrického spektra na základě multiplikativních predikčních modelů The linear prediction models can be useful in different tasks of statistical radio engineering. The examples of multimode spectra decomposition on separate components for speech signals, heart rhythmograms, reflected ultrasound signals and hydroacoustic signals have been shown in the paper. The calculation of autoregressive coefficients and parametric power spectrum density of the multiplicative models were derived. Factorization of spectrum estimations is shown using an example of a multiplicative linear prediction model. Using the models that have been developing in our research it is possible to develop the new methods of complex processes analysis. The methods of rhythmogram analysis can be useful for specialists, who create algorithms of cardiogram analysis. More specifically, we consider a method of multimode spectrum factorization in composite process on components using our multiplicative linear prediction polymodels. autoregrese; factorizce; lineární predikční model model; hustota výkonového spektra
eng Factorization of processes parametric spectra on the base of multiplicative linear prediction polymodels The linear prediction models can be useful in different tasks of statistical radio engineering. The examples of multimode spectra decomposition on separate components for speech signals, heart rhythmograms, reflected ultrasound signals and hydroacoustic signals have been shown in the paper. The calculation of autoregressive coefficients and parametric power spectrum density of the multiplicative models were derived. Factorization of spectrum estimations is shown using an example of a multiplicative linear prediction model. Using the models that have been developing in our research it is possible to develop the new methods of complex processes analysis. The methods of rhythmogram analysis can be useful for specialists, who create algorithms of cardiogram analysis. More specifically, we consider a method of multimode spectrum factorization in composite process on components using our multiplicative linear prediction polymodels. autoregression; factorization; linear prediction model; power spectrum density